HDBuzz-Preis 2024: Ein neuer NEAT-Tanzpartner für Huntingtin
Stolz geben wir AJ Keefe als HDBuzz-Preisträger 2024 bekannt! Zellen sind eine Choreografie molekularer Tänzer. Zu wissen, wer sich mit wem gut bewegt und wie sich das bei einer Krankheit ändert, könnte helfen, Medikamente gegen die HK zu entwickeln.
Von AJ Keefe 23. Dezember 2024 Bearbeitet von Dr Sarah Hernandez Übersetzt von Michaela Winkelmann
Proteine sind wie molekulare Tänzer, wobei die Zelle als Tanzfläche dient. Proteine schließen sich mit verschiedenen Partnern zusammen, um kunstvolle Tänze aufzuführen. Je nachdem, mit wem sie sich zusammentun, können sie unterschiedliche Funktionen in der Zelle ausüben, so wie jemand mit einem Partner lieber Walzer tanzt, mit einem anderen aber Salsa. Die Identifizierung der wichtigsten Tanzpartner in Gesundheit und Krankheit kann uns helfen, die Behandlung von Krankheiten wie Huntington voranzutreiben.
Paarbildung für den molekularen Walzer
Wissenschaftler konzentrieren sich oft auf die Tanzpartner eines Proteins, wenn sie dessen Funktion untersuchen. Wenn man weiß, welche Proteine sich miteinander paaren, erhält man Aufschluss darüber, wie das Protein funktioniert und was es in der Zelle tut. Zellen sind wie eine außerordentlich überfüllte Tanzfläche mit Milliarden interagierender Proteine, die in einem ausgeklügelten Rhythmus ständig mit ihren Partnern interagieren und diese austauschen.
Die Identifizierung von Proteininteraktionen ist entscheidend für unser Verständnis von Krankheiten. Krankheiten können verändern, mit wem ein Protein gerne interagiert, was sich auf die Funktionen auswirken kann, die es in der Zelle ausführt. Wenn unser einst tanzfreudiges Protein sich weigert, mit einem bestimmten Partner zu tanzen, kann es sein, dass es nicht mehr gerne Tango tanzt. Das könnte ein Problem sein, wenn das ihr Lieblingstanz ist.
Huntingtin auf der Tanzfläche
Im Fall der Huntington-Krankheit (HK) arbeiten die Forscher daran, die Tanzpartner des Proteins Huntingtin zu kartieren. Ein Rechtschreibfehler im Huntingtin-Protein verursacht die HK. Die Kenntnis der Interaktionspartner von Huntingtin mit und ohne den Rechtschreibfehler kann helfen, zelluläre Prozesse aufzudecken, die durch die Huntington-Krankheit verändert werden. Wissenschaftler können dieses Wissen über Proteininteraktionen nutzen, um unser Verständnis der Krankheitsmechanismen zu verbessern und schließlich potenzielle Behandlungen zu entwickeln, die in klinischen Studien getestet werden können.
In einer kürzlich erschienenen Veröffentlichung hat ein Team unter der Leitung von Dr. Cheryl Arrowsmith von der Universität Toronto ein Experiment entwickelt, um alle verschiedenen Tanzpartner von Huntingtin zu sehen, nicht nur andere Proteine. Diese Arbeit zeigte, dass Huntingtin auch an ein Molekül namens RNA bindet.
RNA: Ein neuer Huntingtin-Tanzpartner
RNA, ein Cousin der DNA, ist vor allem für seine Rolle bei der Herstellung von Proteinen bekannt. Während die DNA in erster Linie als genetischer Bauplan für den Aufbau von Proteinen dient, hat die RNA ein viel breiteres Spektrum an Aktivitäten. Der am meisten untersuchte RNA-Typ ist die Boten-RNA, auch mRNA genannt, die für Proteine codiert.
„Die meisten Proteine gehen zwar keine Partnerschaften mit RNA ein, aber die neue Arbeit der Gruppe von Dr. Arrowsmith deutet darauf hin, dass Huntingtin eines der wenigen Proteine zu sein scheint, die dies tun. Dies hat die Möglichkeit aufgeworfen, dass der Rechtschreibfehler in Huntingtin, der die Huntington-Krankheit verursacht, diese Interaktionen stören könnte. “
Bis zu 90 % der RNA-Moleküle kodieren jedoch nicht für Proteine und sind keine mRNA. Stattdessen interagieren sie mit Proteinen und koordinieren wichtige zelluläre Prozesse. Auf diese Weise wirken diese so genannten „nicht codierenden“ RNAs selbst wie Proteintänzer oder sind zumindest Protein-Choreographen, die den Proteinen beim Tanzen helfen. Während die meisten Proteine keine Partnerschaften mit RNA eingehen, legt die neue Arbeit von Dr. Arrowsmiths Gruppe nahe, dass Huntingtin eines der wenigen Proteine zu sein scheint, die dies tun. Dies ließ die Möglichkeit aufkommen, dass der Rechtschreibfehler in Huntingtin, der die Huntington-Krankheit verursacht, diese Wechselwirkungen stören könnte.
Die Wissenschaftler hatten eine Reihe von Gründen für die Vermutung, dass Huntingtin mit RNA zusammenarbeiten könnte. Als sie zum Beispiel mit leistungsstarken Mikroskopen die genaue Form und physikalische Struktur von Huntingtin untersuchten, bemerkten sie eine Stelle auf dem Protein, in die theoretisch ein RNA-Molekül passen könnte.
Darüber hinaus zeigten frühere Experimente des Labors von Dr. Arrowsmith, dass sich RNA-Moleküle in bestimmten Experimenten, in denen sie versuchten, die Proteininteraktionen von Huntingtin zu untersuchen, stark mit Huntingtin verbanden. Tatsächlich verband sich so viel RNA mit Huntingtin, dass sie zusätzliche Schritte durchführen mussten, um die RNA loszuwerden (weil sie sich zu dieser Zeit für Proteine interessierten). Dies brachte sie jedoch zu der Frage, was sind diese RNA-Moleküle, die mit Huntingtin zusammenarbeiten, und könnten sie eine Rolle bei der Huntington-Krankheit spielen?
Der Tanz zwischen Huntingtin und RNA
Bevor sie sich in komplexere Techniken vertieften, führten die Forscher ein einfacheres Experiment durch. Sie mischten RNA in eine Art „Wissenschaftspudding“ und setzten ihn einem elektrischen Strom aus. Da RNA-Moleküle negativ geladen sind, wandern sie in Richtung positiver Ladungen, die sich auf der gegenüberliegenden Seite des Wackelpuddings befinden. Die Wissenschaftler verglichen die Geschwindigkeit, mit der sich die RNA durch den Wackelpudding bewegte, mit und ohne das beigemischte Huntingtin.
Sie stellten fest, dass sich die RNA in Gegenwart von Huntingtin langsamer durch den Wackelpudding bewegte, was darauf hindeutet, dass die RNA tatsächlich eine Partnerschaft mit Huntingtin einging. Wichtig ist, dass diese Verlangsamung nicht beobachtet wurde, wenn DNA mit Huntingtin gemischt wurde, was darauf hindeutet, dass Huntingtin eine Spezifität für RNA hat. Dies ist wichtig, da DNA und RNA chemisch sehr ähnlich, aber funktionell sehr unterschiedlich sind. Dieses Experiment zeigte, dass Huntingtin speziell daran interessiert ist, mit RNA und nicht mit DNA zu tanzen.
Ermutigt durch dieses Ergebnis beschlossen die Wissenschaftler, tiefer zu graben und alle RNA zu analysieren, die mit Huntingtin in lebenden Zellen, die in einer Schale gezüchtet wurden, eine Partnerschaft eingingen. Wie erwartet, stellten sie fest, dass Huntingtin mit vielen verschiedenen RNA-Molekülen zusammenarbeitet. Anschließend konzentrierten sie sich auf einige dieser RNA-Partner, um mehr zu erfahren.
Eine NEAT-Tanzsequenz
Bei der Untersuchung der RNA-Partner von Huntingtin fielen den Forschern einige interessante Muster auf. Viele dieser RNA-Moleküle waren an Aktivitäten beteiligt, die für das Überleben der Zellen entscheidend sind. Da diese Aktivitäten so wichtig sind, sind sie nicht die Art von RNA, die Huntingtin auf der Tanzfläche brüskieren sollte!
Huntingtin geht auch bevorzugt Partnerschaften mit einer bestimmten Art von RNA ein, die viel Guanin, einen Baustein der RNA, enthält. Um dies zu bestätigen, stellten die Wissenschaftler einen künstlichen, im Labor hergestellten RNA-Strang mit vielen Guaninen her, und tatsächlich: Huntingtin machte sich an ihn ran.
Die Forscher beschlossen, eine RNA ins Rampenlicht zu rücken, die immer wieder mit Huntingtin eine Partnerschaft einging und viel Guanin enthielt: NEAT1. NEAT1 ist eine RNA, die eine Schlüsselrolle bei der Bildung so genannter Paraspeckles spielt - winzige Strukturen im Zellkern, die die RNA-Produktion steuern. Man kann sich Paraspeckles wie die VIP-Lounge auf der molekularen Tanzfläche vorstellen. NEAT1 ist der RNA-Choreograph, der speziell für die VIP-Lounge zuständig ist, dort mit Partnern tanzt und die Tänze der anderen reguliert. Huntingtin tanzt zwar in der VIP-Lounge, hat aber kein Problem damit, in anderen Bereichen der Zelle zu tanzen. Die Forscher fanden heraus, dass Huntingtin, wenn es in der VIP-Lounge tanzt, sich gerne mit NEAT1 zusammentut.
Als Nächstes wollte das Team herausfinden, ob die NEAT1-Konzentration durch den Huntingtin-Rechtschreibfehler, der die Huntington-Krankheit verursacht, verändert wird. Obwohl sie feststellten, dass die NEAT1-Konzentrationen in Gehirnzellen, die in einer Schale gezüchtet wurden, und in Gehirngewebe von Mäusen, das den Huntingtin-Rechtschreibfehler enthält, niedriger waren, waren die Ergebnisse aus menschlichem Gehirngewebe weniger eindeutig. In den frühen Stadien der Huntington-Krankheit waren die NEAT1-Spiegel niedriger, in späteren Stadien der Krankheit jedoch höher. Die Wissenschaftler vermuten, dass dies durch den Verlust von Gehirnzellen bei fortschreitender Krankheit verursacht werden könnte. Unabhängig davon deuten diese Ergebnisse darauf hin, dass der NEAT1-Spiegel bei der Huntington-Krankheit verändert ist.
„Diese Ergebnisse sind bedeutsam, weil sie zeigen, dass Huntingtin mit NEAT1 interagiert, einer RNA, die für die Bildung der Paraspeckles entscheidend ist, und dass diese Interaktion bei der Huntington-Krankheit gestört ist, was zu ernsthaften Problemen im Gehirn führen kann. “
Die VIP-Lounge
Um herauszufinden, ob ein direkter Zusammenhang zwischen NEAT1 und Huntingtin besteht, testeten die Wissenschaftler, ob sich Veränderungen des Huntingtin-Spiegels auf den NEAT1-Spiegel oder die Paraspeckles, die NEAT1 organisiert, auswirken könnten. Denn wenn Sie wissen, dass Ihr Lieblingstanzpartner nicht kommt, kommen Sie vielleicht auch nicht! Die Forscher fanden heraus, dass die NEAT1-Konzentration nach der Senkung des Huntingtin-Spiegels rasch abnahm, was darauf hindeutet, dass Huntingtin NEAT1 stabilisiert. NEAT1 will also nur da sein, wenn Huntingtin auch da ist. Da NEAT1 für die Bildung von Paraspeckles entscheidend ist, führte die Reduzierung von Huntingtin auch zu kleineren und weniger Paraspeckles im Zellkern. Ohne Huntingtin macht sich NEAT1 also nicht einmal die Mühe, die VIP-Lounge zu organisieren. Das ist ein ernsthaftes Engagement für Ihren Tanzpartner!
Als Nächstes untersuchten die Forscher, ob der Rechtschreibfehler, der die Huntington-Krankheit verursacht, Auswirkungen auf die Rolle von NEAT1 bei der Organisation der Paraspeckles hat. Sie fanden heraus, dass Gehirnzellen, die in einer Schale mit HK-verursachendem Huntingtin gezüchtet wurden, weniger Paraspeckles aufwiesen, und dass die verbliebenen kleiner waren. Dies deutet darauf hin, dass sowohl der Verlust von Huntingtin als auch das Vorhandensein von HK-verursachendem Huntingtin die Paraspeckelbildung stören, möglicherweise durch Destabilisierung von NEAT1.
Diese Ergebnisse sind bedeutsam, denn sie zeigen, dass Huntingtin mit NEAT1, einer für die Paraspeckelbildung entscheidenden RNA, interagiert und dass diese Interaktion bei Huntington gestört ist, was zu ernsthaften Problemen im Gehirn führen kann. Es gibt jedoch noch einige wichtige unbeantwortete Fragen. Zum einen wurden die meisten dieser Experimente an Zellen durchgeführt, die in einer Schale gezüchtet wurden, so dass wir nicht wissen, ob die gleichen Wechselwirkungen im menschlichen Gehirn auftreten. Außerdem sind die Folgen einer verminderten NEAT1- und Paraspeckelbildung im Gehirn noch unklar. Frühere Studien an Mäusen deuten darauf hin, dass NEAT1 für die Entwicklung des Gehirns oder das Überleben der Gehirnzellen nicht wesentlich ist. Die Folgen einer Unterbrechung der NEAT1- oder Paraspeckelbildung beim Menschen oder bei menschlichen Krankheiten sind jedoch unbekannt.
Auszoomen auf der Tanzfläche
Auch wenn sich die meisten dieser Arbeiten auf NEAT1 und Paraspeckles konzentrieren, sollten wir das große Ganze nicht aus den Augen verlieren: Huntingtin interagiert mit RNA! NEAT1 war nur eine von bis zu 571 RNAs, die die Forscher gefunden haben und die mit Huntingtin interagieren können, von denen viele an wichtigen Aktivitäten wie der Energieerzeugung beteiligt sind. In künftigen Studien muss untersucht werden, wie Huntingtin diese anderen RNAs beeinflussen könnte, so wie in dieser Studie NEAT1 analysiert wurde. Wenn Huntingtin zum Beispiel für die Stabilität von NEAT1 wichtig ist, könnte Huntingtin dann auch andere wichtige RNAs stabilisieren?
Denken wir an Therapeutika - wo führt uns diese Forschung hin? Zunächst einmal wird diese Studie sicherlich zu weiteren Forschungen über die RNA-Verbindung von Huntingtin anregen. Und wenn sich herausstellt, dass eine Interaktion zwischen einer bestimmten RNA und Huntingtin schädlich oder vorteilhaft ist, könnten kleine Moleküle entwickelt werden, die diese Partnerschaft beeinflussen. In der ausgeklügelten Choreografie zellulärer Prozesse ist das Finden der richtigen molekularen Tanzpartner wie das Spielen des perfekten Songs - es kann die Bühne für eine harmonische Aufführung bereiten oder einen Fehltritt verhindern, der die gesamte Routine stört.